Canonical-correlation analysis applied to selection-index methodology in quails

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable selection for generalized canonical correlation analysis.

Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to 3 or more sets of variables. RGCCA is a component-based approach which aims to study the relationships between several sets of variables. The quality and interpretability of the RGCCA components are likely to be affected by the usefulness and relevance of the varia...

متن کامل

On Column Selection in Approximate Kernel Canonical Correlation Analysis

We study the problem of column selection in large-scale kernel canonical correlation analysis (KCCA) using the Nyström approximation, where one approximates two positive semi-definite kernel matrices using “landmark” points from the training set. When building low-rank kernel approximations in KCCA, previous work mostly samples the landmarks uniformly at random from the training set. We propose...

متن کامل

Stochastic Canonical Correlation Analysis

We tightly analyze the sample complexity of CCA, provide a learning algorithm that achieves optimal statistical performance in time linear in the required number of samples (up to log factors), as well as a streaming algorithm with similar guarantees.

متن کامل

Nonparametric Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel o...

متن کامل

Continuous canonical correlation analysis

Given a bivariate distribution, the set of canonical correlations and functions is in general finite or countable. By using an inner product between two functions via an extension of the covariance, we find all the canonical correlations and functions for the so-called Cuadras-Augé copula and prove the continuous dimensionality of this distribution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Livestock Science

سال: 2014

ISSN: 1871-1413

DOI: 10.1016/j.livsci.2014.09.021